
Lecture 3

CONCEPTS OF OBJECT-ORIENTED PROGRAMMING



Classes

 Class : A category of objects. The class defines all the common properties of the

different objects that belong to it.

 Object : Refers to a particular instance of a class where the object can be a

combination of variables, functions, and data structures.

 Method : A combination of instructions grouped together to achieve some result. 

It may take arguments and return result.

 Property : A member that provides a flexible mechanism to read, write, or 

compute the value of a private field



What is OOP



What is OOP



What is OOP

 Inheritance : The process of creating the new class by extending the existing 

class or the process of inheriting the features of base class is called as 

inheritance.

 Polymorphism : Poly means many and Morph means forms. Polymorphism is 

the process in which an object or function take different forms.

 Abstraction : Abstraction is the process of showing only essential features of 

an object to the outside world and hide the other irrelevant information.

 Encapsulation : Encapsulation is a process of binding data members (variables, 

properties) and methods together.



Methods
 A method is a code block that contains a series of statements. A program

causes the statements to be executed by calling the method and specifying any 

required method arguments.

 Method name and its parameters types (but not the parameter names) are

part of the signature.

static void Main(string[] args)

{

int a, b, c, d;

int addResult = 0;

a = 5;

b = 3;

addResult = a + b;

Console.WriteLine($" {a} + {b} = {addResult}");

DisplayMessage();

c = 15;

d = 10;

addResult = c + d;

Console.WriteLine($" {c} + {d} = {addResult}");

DisplayMessage();

}

static void DisplayMessage()

{

Console.WriteLine("Process is done");

Console.WriteLine("This process is run by 

ahmad");

Console.WriteLine("Finished on time : 

"+DateTime.Now.ToShortTimeString());

}



Methods

static void Main(string[] args)

{

int a, b, c, d;

int addResult = 0;

a = 5;

b = 3;

addResult = 

PerformAddOperation(a, b);

Console.WriteLine($" {a} + 

{b} = {addResult}");

DisplayMessage();

c = 15;

d = 10;

addResult = 

PerformAddOperation(c, d);

Console.WriteLine($" {c} + 

{d} = {addResult}");

DisplayMessage();

}

static int PerformAddOperation(int x, int y)

{

int addResult = 0;

addResult = x + y;

return addResult;

}

static void DisplayMessage()

{

Console.WriteLine("Process is 

done");

Console.WriteLine("This 

process is run by ahmad");

Console.WriteLine("Finished on 

time : " + 

DateTime.Now.ToShortTimeStrin

g());

}



Methods
 Passing by value (using a copy)

 Passing by reference (using the variable itself)

 ref keyword

 out keyword

static void Main(string[] args)

{

//string firstEmployee, secondEmployee;

//firstEmployee = "David Smith";

//secondEmployee = "Sophia Watson";

//Console.WriteLine($"Inside Main Method\n--

--------\n{firstEmployee} \n{secondEmployee}\n\n");

ChangeNames(out string firstEmployee, out 

string secondEmployee);

Console.WriteLine($"Inside Main Method\n-----

-----\n{firstEmployee} \n{secondEmployee}\n\n");

}

static void ChangeNames(out string firstEmp,out

string secEmp)

{

firstEmp = "Olivia Aaron";

secEmp = "Alvaro Salazar";

Console.WriteLine($"Outside Main Method\n-

---------\n{firstEmp} \n{secEmp}\n\n");

}



Overloaded methods

static void Main(string[] args)

{

string guestName = "";

Console.WriteLine("Hello, Dear Guest, what is 

your name?");

guestName = Console.ReadLine();

if (guestName == string.Empty)

WelcomeGuest();

else

WelcomeGuest(guestName);

}

static void WelcomeGuest()

{

Console.WriteLine("Okay, we 

hope you enjoy staying at our hotel");

}

static void WelcomeGuest(string 

name)

{

Console.WriteLine($"Thank you 

{name}, we hope you enjoy staying at 

our hotel");

}


