
Lecture 3

CONCEPTS OF OBJECT-ORIENTED PROGRAMMING



Classes

 Class : A category of objects. The class defines all the common properties of the

different objects that belong to it.

 Object : Refers to a particular instance of a class where the object can be a

combination of variables, functions, and data structures.

 Method : A combination of instructions grouped together to achieve some result. 

It may take arguments and return result.

 Property : A member that provides a flexible mechanism to read, write, or 

compute the value of a private field



What is OOP



What is OOP



What is OOP

 Inheritance : The process of creating the new class by extending the existing 

class or the process of inheriting the features of base class is called as 

inheritance.

 Polymorphism : Poly means many and Morph means forms. Polymorphism is 

the process in which an object or function take different forms.

 Abstraction : Abstraction is the process of showing only essential features of 

an object to the outside world and hide the other irrelevant information.

 Encapsulation : Encapsulation is a process of binding data members (variables, 

properties) and methods together.



Methods
 A method is a code block that contains a series of statements. A program

causes the statements to be executed by calling the method and specifying any 

required method arguments.

 Method name and its parameters types (but not the parameter names) are

part of the signature.

static void Main(string[] args)

{

int a, b, c, d;

int addResult = 0;

a = 5;

b = 3;

addResult = a + b;

Console.WriteLine($" {a} + {b} = {addResult}");

DisplayMessage();

c = 15;

d = 10;

addResult = c + d;

Console.WriteLine($" {c} + {d} = {addResult}");

DisplayMessage();

}

static void DisplayMessage()

{

Console.WriteLine("Process is done");

Console.WriteLine("This process is run by 

ahmad");

Console.WriteLine("Finished on time : 

"+DateTime.Now.ToShortTimeString());

}



Methods

static void Main(string[] args)

{

int a, b, c, d;

int addResult = 0;

a = 5;

b = 3;

addResult = 

PerformAddOperation(a, b);

Console.WriteLine($" {a} + 

{b} = {addResult}");

DisplayMessage();

c = 15;

d = 10;

addResult = 

PerformAddOperation(c, d);

Console.WriteLine($" {c} + 

{d} = {addResult}");

DisplayMessage();

}

static int PerformAddOperation(int x, int y)

{

int addResult = 0;

addResult = x + y;

return addResult;

}

static void DisplayMessage()

{

Console.WriteLine("Process is 

done");

Console.WriteLine("This 

process is run by ahmad");

Console.WriteLine("Finished on 

time : " + 

DateTime.Now.ToShortTimeStrin

g());

}



Methods
 Passing by value (using a copy)

 Passing by reference (using the variable itself)

 ref keyword

 out keyword

static void Main(string[] args)

{

//string firstEmployee, secondEmployee;

//firstEmployee = "David Smith";

//secondEmployee = "Sophia Watson";

//Console.WriteLine($"Inside Main Method\n--

--------\n{firstEmployee} \n{secondEmployee}\n\n");

ChangeNames(out string firstEmployee, out 

string secondEmployee);

Console.WriteLine($"Inside Main Method\n-----

-----\n{firstEmployee} \n{secondEmployee}\n\n");

}

static void ChangeNames(out string firstEmp,out

string secEmp)

{

firstEmp = "Olivia Aaron";

secEmp = "Alvaro Salazar";

Console.WriteLine($"Outside Main Method\n-

---------\n{firstEmp} \n{secEmp}\n\n");

}



Overloaded methods

static void Main(string[] args)

{

string guestName = "";

Console.WriteLine("Hello, Dear Guest, what is 

your name?");

guestName = Console.ReadLine();

if (guestName == string.Empty)

WelcomeGuest();

else

WelcomeGuest(guestName);

}

static void WelcomeGuest()

{

Console.WriteLine("Okay, we 

hope you enjoy staying at our hotel");

}

static void WelcomeGuest(string 

name)

{

Console.WriteLine($"Thank you 

{name}, we hope you enjoy staying at 

our hotel");

}


